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A Brief Review of the Application of *C in Terrestrial Carbon Cycle Studies

An over-arching goal of the DOE TCP program is to understand the mechanistic
controls over the fate, transport, and residence time of carbon in the terrestrial biosphere.
Many of the modern process and modeling studies focus on seasonal to interannual
variability. However, much of the carbon on the landscape and in soils is in separate
reservoirs with turnover times that are multi-decadal to millennial. It is the controls on
these longer term pools or reservoirs that is a critical unknown in the face of rising GHGs
and climate change and uncertainties of the terrestrial biosphere as a future global sink or
source of atmospheric CO; [eg., Friedlingstein et al., 2006; Govindasamy et al., 2005;
Thompson et al., 2004].

Radiocarbon measurements, in combination with other data, can provide insight
into, and constraints on, terrestrial carbon cycling. Radiocarbon (t;2 5730yrs) is produced
naturally in the stratosphere when secondary neutrons generated by cosmic rays collide
with '*N atoms [Libby 1946; Arnold and Libby, 1949]. Upon formation, '*C is rapidly
oxidized to CO and then to CO,, and is incorporated into the carbon cycle. Due to
anthropogenic activities, the amount of '*C in the atmosphere doubled in the mid/late
1950s and early 1960s from its preindustrial value of '*C/"*C ratio of 1.18x10™"* [eg.,
Nydal and Lovseth, 1983]. Following the atmospheric weapons test ban in 1963, the
1C/"*C ratio, has decreased due to the net isotopic exchange between the ocean and
terrestrial biosphere [eg., Levin and Hessheimer, 2000] and a dilution effect due to the
burning of *C-free fossil fuel carbon, the “Suess Effect” [Suess, 1955]. In the carbon
cycle literature, radiocarbon measurements are generally reported as A'*C, which
includes a correction for mass dependent fractionation [Stuiver and Polach, 1977].

In the context of carbon cycle studies radiocarbon measurements can be used to
determine the ‘age’ and rate of change of carbon stocks or as a biogeochemical tracer to
elucidate processes and pathways. It is this dual nature that can be exploited across
scales in space (individual plant, plot or research site, ecosystem, regional, and global)
and time (days to millennia). For example, across regional scales, A'*C measurements of
atmosphere CO; can be used to attribute carbon dioxide to sources (e.g., respiration vs.
fossil fuel emissions) or sinks ( e.g,. photosynthesis), which cannot be readily inferred
from concentration, net flux measurements, or & °CO, [eg. Graven et al., 2009; Levin and
Hessheimer, 2000; Turnbull ef al., 2007]. At smaller scales, similar analyses can be used
to elucidate the source, and ‘age’ of the below ground component undergoing
heterotrophic respiration.

Net (biome or ecosystem) uptake of carbon is the difference of two large fluxes:
photosynthesis and respiration. Carbon fixation by photosynthesis is, to a large extent, a
single process with theoretical underpinnings. On the other-hand, net ecosystem or
biome respiration integrates microbial (heterotrophic) and plant (autotrophic) respiration.
Eddy covariance methods can be used to estimate bulk CO; fluxes but they cannot
discriminate the process nor the source of the respired CO,. It is these processes that are
parameterized in predictive models and contribute to the uncertainty in the climate



forcing effect of the carbon cycle in the future [Friedlingstein et al., 2006; Heimann and
Reichstein, 2008].

Radiocarbon measurements to improve our understanding of soil C storage,
stabilization, and loss.

Globally, more C is stored in soils as soil organic matter than in terrestrial
vegetation and the atmosphere combined [eg., Schlesinger, 1997; Schurr et al., 2007;
www.gcp.org]. Soil is the largest single reservoir for carbon stored in the terrestrial
system; nearly three quarters of all carbon in the terrestrial reservoir resides in the soil
carbon pool including peat and permafrost stores [eg., Schuur et al., 2007]. Soil organic
matter is heterogeneous, consisting of components that turn over on timescales ranging
from days to thousands of years with input from litter, roots, and other allochtonous
detrital components [e.g., Davidson et al., 1996; Gaudinski 2000; Trumbore 2000;
Schuur et al., 2001; Swanston et al., 2005]. These sub-pools can be physically separated
in the laboratory to determine the distribution of soil carbon amongst labile, intermediate,
and stable pools. Radiocarbon measurements for these sub-pools coupled with C stock
estimates allow for the calculation of soil organic matter turnover times, which also yield
estimates of carbon loss.

Differences in SOM distribution or turnover times amongst sites or over time can
indicate factors controlling SOM storage, stabilization, and loss. Terrestrial carbon stocks
above- and belowground (in humus and litter layers, woody debris, and mineral soil) are
not only sensitive to physical environmental controls (e.g., temperature, precipitation, soil
moisture) but also to land use history/management, disturbance, “quality” of carbon input
(a reflection of plant C allocation and species controls), and the microbial community.
The relative importance of these controls on soil C storage and flux can be assessed with
radiocarbon-based turnover times and SOM distribution for locations of interest.
Information on changes in the rate of exchange between belowground pools are not
otherwise discernible: net loss may be determined but the loss could be from a fast or
slow turnover pool or the movement of carbon between pools. This information can be
coupled with other observations to understand and model the mechanisms for soil organic
matter (SOM) protection and the transformation of recently fixed labile carbon into more
stable carbon that is sequestered in the biosphere.

Carbon Allocation and Respiration Partitioning

Because '*C is much more rare than *C (~1:10'") radiocarbon can be used as an
isotopic tracer in labeling studies using much lower levels of label than the rare stable
isotope (13 C, which is ~1:100 relative to 12C) [Czimczik et al., 2005; Carbone et al.,
2007]. This allows for the addition of very low amounts of added carbon and for the
ability to measure the added label over a wider range of time scales compared to stable
isotope labeling techniques which are rapidly diluted. Low-level '*C pulse-chase
experiments provide valuable information on C cycling patterns across temporal scales
ranging from a few hours to months, shorter timescales than can be investigated using C



stock measurements. This type of experiment has been used to study photosynthate
allocation patterns [Carbone et al., 2007] and determine mean residence time for plant
photosynthate in plants [Carbone and Trumbore 2007], to partition ecosystem respiration
sources (e.g., plants vs. soil heterotrophs, above- vs. belowground plant tissue) [Carbone
et al., 2007], and to investigate soil microbial food webs, specifically consumption and
subsequent respiration of labile soil organic matter compounds by saprotorphic
(decomposer) fungi [Czimczik et al., 2005].

“Natural’ atmospheric '*CO; can also be used, without an additional tracer or
label, to address some of these research questions. Natural abundance can be used to
partition total soil respiration, including separation of heterotrophic from root respiration
[Czimczik et al., 2006] identification of C-sources for microbial decomposition
[Czimczik and Trumbore, 2007]. New applications of atmospheric '*CO, levels take
advantage of the secular decrease in A'*CO, since ~1963 have been used to determine
plant C allocation patterns to explore interannual to decadal stores of non-structural
carbon in trees [Czimczik, I[CDCS8 Jena, DE 2009].
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